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ABSTRACT

This paper presents a method for updating the damping matrix of a
linear dynamic system.

For this study, it is assumed that the characteristic mass and
stiffness matrices are perfectly known thanks to updating using
experimental modal data. Furthermore, it is accepted that damping
has only a minor effect on the frequencies and mode shapes of a
structure (a hypothesis that is verified for structures with low
damping).

It is proposed to adjust the coefficients of the hysteretic damping
matrix [D] by superposing the experimental and corresponding
analytical Frequency Response Functions (FRF). The frequencies
and mode shapes are extracted from the solution of the characteristic
equation of movement. An analytical FRF is calculated and then
used to compute the sensitivity matrix, showing the influence of the
updating parameters on the FRF. To update the damping matrix, a
non-linear weighted least squares estimation is used.

NOMENCLATURE

an subscript for analytical data

exp subscript for experimental data

e subscript for estimated data

n number of degrees of freedom

[A] ∈  Rn*n real matrix with a dimension of n*n

[B] ∈  Cn*n complex matrix with a dimension of n*n

[ M ] mass matrix in physical coordinates

[ K ] stiffness matrix in physical coordinates

[ D ] damping matrix in physical coordinates

[ S ] sensitivity matrix

    
first derivative of a vector

    
second derivative of a vector

λj jth eigenvalue

ϕ j jth eigenvector

ψ j mass normalized jth  eigenvector

H ij Function Response data , i point of excitation,
j point of response.

INTRODUCTION

An important requirement in dynamic analysis is to establish an
analytical model capable of reproducing the experimental tests. For
this purpose, experimental modal analysis and finite element models
that describe the behavior of the structure in terms of frequencies,
mode shapes and damping loss factor are often used. It is now
possible to adjust the physical element properties that are used in FE
models using various approaches [1, 2]. However, to date, only few
attempts were made to include the damping matrix. Most FE model
updating methods are based on the equation of the conservative
model (without damping).

This paper presents an updating method that takes damping into
account. The method consists of two stages. Using modern software
[3], the first stage consists of adjusting the element material and
geometrical properties, and thus implicitly the mass and stiffness
matrices. The damping matrix will be updated in the second stage
from the superposition of the experimental and analytical Frequency
Response Functions (FRFs).

Using FRFs offers several advantages, like for example:

1. The calculation of FRFs is relatively simple, as it is a division
of Fourier transforms.

2. FRFs contain all the data such as frequencies, modes shapes
and modal damping loss factors. The latter are the most
difficult properties to identify.

3. The problem of expansion or reduction of the number of degree
of freedom (DOF) does not arise. This problem comes from the
fact that the number of experimental DOF is often lower than
the number of analytical DOF.

4. It is possible to adjust as many parameters involved in the
construction of the damping matrix as there are sampling
points on the FRF measurement. This number is often
relatively high.



MULTI DEGREE OF FREEDOM SYSTEMS

Damping in the form of a hysteretic (or structural) damping will be
considered in the first part. The equation of the movement, for a
system with n DOF, subjected to a harmonic excitation, is written as
follows :

M  X  + ( K  + i D  ) X  = f  ei ω t

, (1)

M  X  + B  X  = f  ei ω t ,

i = -1  .
Considering the homogenous equation without the second member,
solutions of (1) take the following form:

X  = φ  ei µ t

(2)

Substituting (2) into (1), the characteristic equation is obtained:

(-µr
2 M  + B  ) φ  = 0  ⇔ (-λr M  + B  ) φ

(3)

The solutions appear in the form of two complex matrices: one of
dimension (n x 1) containing the eigenvalues and the other of
dimension (n x n), where the columns contain the mode shapes {ϕr}
associated with the eigenvalues µr :

µr
2 = ωr

2 (1 + i.ηr) (4)
where ωr represent the natural frequency, and ηr the damping loss

factor. The mass and the [B] matrices, written in the base of the
mode shapes, are diagonal and

ϕ T M  ϕ  = 
0

m
0

 , ϕ T K + i D  ϕ  = 
0

k
0

 ,

(5)

and

µr
2 = kr

mr
 .

The mass-normalized mode shape for mode r is:

ψ r = 1
mr

 ϕ r.
(6)

Considering the particular case where the excitation and the
response to equation (1) are respectively a harmonic response and
excitation, this yields:

φ  = ( K  + i D  - ω2 M  )-1 f  = h (ω)  f  .
(7)

from which the matrix of the following FRFs is derived:

h (ω)  = ψ  

0

( µr
2 - ω2 )

0

-1

ψ T .

(8)

From this matrix, a receptance is extracted such that, if the
excitation occurs at a point i and the response at a point j (or vice
versa), the following equation is obtained:
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(9)

The accelerance (or inertance) becomes:

Hij(ω)=-ω2hij(ω) (10)

CONSTRUCTION OF THE FE MODEL

The structure is discretized into N finite elements and the mass and
stiffness matrices are computed such that:

[ ]
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∑
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(11)

Let

[ ]D K Mi ie i ie
i

N

= +
=
∑α β

1

(12)

For an homogenous, isotropic and linear structure, this gives:

[ ]D K M= +α β (13)

In this particular case, the mode shapes are found to be identical to
those of the conservative system, and the eigenvalues are written in
the following complex form:

µr
2 = ω r

2 (1 + i.ηr) (14)

where ωr  are the frequencies of the non-damped system.

PROCEDURE FOR FRF-BASED UPDATING

The method consists of superposing an experimental FRF on an
analytical FRF. The analytical FRF is calculated from equation (10),
by attributing arbitrary values to αi and βi. Using successive
iterations, and by calculating the sensitivity of the FRF with respect
to the αi and βi coefficients, the values that minimize the difference
between the experimental FRF and the analytical FRF are obtained.

Let R be the vector of the parameters to be adjusted:

R = 
r1

rp

 = αi

βi

 

(15)

Sensitivity matrix [S] translates the influence of the parameters r on
the FRF:
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with

∂
∂
m

r
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
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= [ ]0

The measurement points are noted ωi, for i = 1 to q. The derivatives
of the FRF with respect to the eigenvalues and mode shapes take the
following forms:
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Furthermore:
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E(x) designating the entire part of x, and s = k + 1 - n ( r - 1 ),

for k = 0 to n2 - 1
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Furthermore, the matrices of the derivatives of the eigenvalues and
of the mode shapes with respect to the b coefficients of the [B]
matrix give [4]:
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where

δmj = 1   if m = j

δmj = 0   if m ≠  j

∂ψ
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
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is a square martix (n2 x n2).

The final stage of the calculation of the sensitivity matrix consists of
calculating the derivative of the matrix [B] with respect to vector R:
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 is a rectangular matrix (n2 x p)

[ ] [ ][ ]∂
∂
b

r
i K i M

i

lj
ke ke=

= −

,

1

(27)

A non-linear weighted least squares resolution [5] is used to
minimize function F, with:

( )F w H Hii an i i
i
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=
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with H (ωi) = H (ωi, r1, r2, ,rp).

wii  is a weight which is equal to the inverse of square of the
uncertainty where:

w ii  = 1
σ i

2
 

(29)

which results in solving:
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with k=1 to p.

To obtain a linear formulation, Han is written in the form of a Taylor

series development of the first order:
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If

Rl = ( rl - rle ), (32)

and let [S] be the sensitivity matrix:
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for k = 1 to p.

Expression (34) is equivalent to solving the following linear system:

[ ][ ] [ ]E R V= (35)
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Note that it is easier to update the parameters on the modulus of the
FRF (and/or the phase), as in this case the matrix E and the vector V
are real. The solution R will therefore necessarily be real.

The different steps of the algorithm are summarized in the following
flow-chart:

Calculation of
ψk

iλ i
k k

ij
H

Minimisation of F k

Solution of
kE k VRk+1

oR oE

Rk+1

APPLICATION EXAMPLE

The method is applied to a bar made of plexiglass material for which
the modes of traction and compression are of interest. The structure
is modeled using 12 bar elements with one degree of freedom per
node (figure 1). After assembly, the mass and stiffness matrices are
tri-diagonal in blocks.

Experimentally, the structure is excited at one of its ends. The
response signal is recorded at the other end (figure 2). By modal
analysis, the first three frequencies and the first three mode shapes
in traction-compression are extracted.

The first step consists of updating the Young’s modulus of the
material for all elements (its density being perfectly known) from

the comparison of experimental and analytical resonance
frequencies and modes shapes.

The following table shows the experimental and analytical
frequencies after updating the Young’s modulus E:

0RGH�1XPEHU $QDO\WLFDO�)UHT���+]� ([SHULP��)UHT��+]�

1 887 887

2 1784 1791

3 2700 2696

Table 1: Resonance frequencies of the plexiglass bar.

The second step consists of using the method previously developed.
Updating will be performed on the α et β coefficients such that α=
αi and β = βi, irrespective of i. Arbitrary starting values are given to
these two coefficients. After five iterations, the analytical FRF
converges towards the experimental FRF (figures 3 and 4).

CONCLUSION

A method to iteratively identify damping coefficients from
experimentally obtained FRFs was presented. From initial
applications, it was observed that convergence of the method is
better when the starting values for α et β coefficients are not too far
from the solution. Convergence then requires only a few number of
iterations.

To verify that the FRF that is calculated from by the analytical
model is sufficiently close to the experimental one, the Signature
Assurance Criterion (SAC) [6] between these two FRFs is used:

SAC u v
u v

u uv v

T

T T( , )
( )

= 100

2

(37)

Two perfectly correlated FRFs correspond to a SAC of 100.
Obtaining a SAC of 100 is a necessary but not sufficient criterion
(because, for example, of an insufficient sampling).

The matrices that are used in the construction of sensitivity matrix
[S] can reach large dimensions (up to a maximum of n2*n2 where n
is the number of DOF of the FE model). This consideration must be
taken into account when programming the method.

The method is very promising and was implemented as an extension
to the FemTools software program [3]. Further ongoing work
consists of defining bounds of applicability by using it with
different types of real life structures like assembled structures in
order to identify damping at the joints.
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FIGURES
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Figure 1: Model of the beam.
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Figure 2 : Experimental FRF data of the beam for traction-compression.
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Figure 3: Superposition of the experimental FRF and the updated FRF after five iterations.
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Figure 4: Convergence of  the magnitudes of  the analytical FRF for the first 3 frequencies.


