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Abstract
The elastic properties of homogeneous, linear-elastic materials can be identified using resonant vibration
analysis. Several sources of uncertainty contribute to the combined uncertainty of the measured values. This
paper presents a method to handle uncertainty budgets in vibration based mixed numerical-experimental
identification techniques. The presented method is evaluated with two numerical test cases. The first example
considers an isotropic material, and allows to compare the presented method with the method proposed in the
UNCERT Code of Practice 13 [1]. The second example considers the uncertainty budget of the identification
of a coated steel plate.

1 Introduction

Resonant vibration analysis is commonly used for the identification of the elastic properties of homogeneous,
linear-elastic materials. Modern laboratory practice demands the specification of the uncertainty associated
with a measured value, in accordance with the ISO-Guide for the Uncertainty of Measurement (GUM) [2] .
GUM-compliant uncertainty budgets identify the individual uncertainty contributions to the combined uncer-
tainty of the measured value. A GUM-compliant uncertainty budget has been proposed for the measurement
of the elastic modulus using the flexural resonance frequency of a long beam [1]. More advanced identifica-
tion techniques have enabled the characterization of the elastic properties of non-homogeneous (e.g. coated
substrates) or non-isotropic materials (e.g. composites). These Mixed Numerical-Experimental Techniques
(MNETs) go beyond the analytical approach and require numerical techniques as they interpret the measured
resonance frequencies. In this paper, the authors propose a method to estimate the uncertainty associated with
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the elastic properties identified with such a MNET.

2 Vibration based material identification

2.1 Standardized methods

A well-established method to determine the stiffness of a homogeneous material consists of measuring the
dimensions, weight and the resonant frequencies of a carefully machined rectangular beam or rod. The
ASTM E 1876 and ENV 843-2 standard procedures specify the validated analytical equations relating these
measurements with the Young’s modulus and shear modulus of the material. The elastic modulus can be
obtained from the fundamental flexural frequency (ff ) with:

E = 0.9465
m f2

f l3

w t3
T1 (1)

in which l, w, t andm are the sample’s length, width, thickness and mass, respectively.T1 is a transverse
shear correction factor which depends on Poisson’s ratio (ν) and thickness to length ratio.
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The material’s shear modulus can be derived from the fundamental torsion frequency (ft) as:
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in whichA is an empirical correction factor.
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2.2 Mixed numerical-experimental approach

Besides the use of standardized testing procedures, elastic material properties can also be identified with
mixed numerical-experimental techniques (MNETs). Figure 1 displays the general flowchart of the MNET
used to identify elastic material parameters. The experimental part consists of a modal analysis test per-
formed on a freely suspended material specimen. This test configuration is used because it can be approx-
imated by free-free boundary conditions in the finite element model. The measured resonance frequencies
are used as input data for the identification routine. The numerical part of the method consists of a fully
converged FE-model. The numerical frequencies are calculated using a set of trial values for the unknown
material parameters. The numerical frequencies are compared with the measured frequencies, and corrected
material properties are found by minimizing the residues of the frequency differences between the experi-
mental and numerical frequencies. The improved material properties are inserted in the FE-model and a new
iteration cycle is started. Once the numerical and experimental frequencies match, the procedure is aborted,
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Figure 1: General flowchart for MNET based elastic material identification procedures.

and the desired material properties can be found in the database of the FE-model. Various applications have
already shown that MNETs are a reliable tool to identify elastic material properties [3, 4].

Mathematically, the MNET identification procedure is formulated as an optimization problem. A sensitivity
analysis provides the relation between an imposed parameter change and the resulting frequency shift:

[S]{∆p} = {∆f} (6)

The vectors{∆p} and{∆f} contain the parameter and frequency changes, respectively. The matrix[S]
is the sensitivity matrix and contains the partial derivatives of the resonance frequencies with respect to
the elastic material parameters. The elastic properties are found by minimizing the frequency differences
between the experimental and numerical frequencies. The optimal frequency shift is thus defined by

minimize ‖{∆f} − {fnum − fexp}‖2
2 (7)

where‖ � ‖2 denotes the Euclidean norm. Inserting the sensitivity relation (6) into (7) provides the mathe-
matical expression of the MNET’s optimization problem.

min
∆p
imize ‖[S]{∆p} − {fnum − fexp}‖2

2 (8)

To ensure a stable convergence of the iterative procedure, the optimization problem (8) is solved by consid-
ering a set of box constraints on the optimization parameters – the elements of the vector{∆p} – in such a
way that each material parameter cannot change more than 25% during one iteration step.

2.3 Layered materials

Due to the flexibiliy of finite element models, MNETs are an obvious choice to develop test procedures to
measure the elastic properties of layered materials. The extension of non-layered to layered identification
routines is discussed in detail in [5], where it is explained that it is impossible to identify the elastic properties
of the layers of a laminate from the frequencies of one single specimen. Resonance frequencies of laminates
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are controlled by the overall stiffness of the material. But, since the same overall stiffness can be obtained
with an infinite number of different layer stiffness combinations, it is impossible to decompose the overall
stiffness into the correct layer stiffnesses. This uniqueness problem can be overcome by using the frequencies
of a set of test specimens. Each specimen of this set must be made with the same material layers, but must
have a different overall stiffness. In [5] it is proven that there will only be one set of layers stiffnesses that
will result in the correct overall stiffness for all the test specimens, if the number of test samples is larger
than or equal to the number of unknown material layers. In this way, the uniqueness of the solution can be
assured.

The overall stiffness of the laminate can only be altered by changing the stacking sequence of the layers or
by changing the thickness of – one of – the layers, which means that layered material identification requires
a number of purpose built or modified samples. One type of layered materials where this approach can be
followed are coated materials.

3 Uncertainty budgets

3.1 The analytical method for a homogeneous material

The UNCERT Code of Practice 13 [1] proposes a way to handle the uncertainty budget for the procedures
described in the ASTM and EVN standards. This Code of Practice describes the relation between the un-
certainty on the measurands (E,G) and measurements (m,w, l, t, ff , ft). For each of the measurements the
uncertainty sources are identified (such as the uncertainty associated with the use of a caliper or balance)
and classified according to Type A (evaluated by statistical means from a number of repeated observations)
or Type B (obtained from calibration certificate, manufacturer’s information or expert’s estimation). In this
paper, we will consider the identification of the properties of one sample with one system or tool for each of
the measurements. The sample’s shape is assumed to be well defined – as would be the case for carefully
machined samples. Therefore, the measurements of the dimensions are highly repeatable, as is also known
to be the case for the resonant frequencies. As a result the uncertainty contributions are all dominated by the
instrument accuracy, which is an estimated uncertainty of Type B. The probability distributions are consid-
ered rectangular (true value certainly within range, with an equal probability in the whole uncertainty range).
For this type of probability distribution, the standard uncertainty is obtained as the uncertainty range di-
vided by the divisor

√
3. Assuming that the individual uncertainty sources are uncorrelated, the measurand’s

combined uncertainty,uc, can be computed as

uc =
√∑

i

(ci u(xi))
2 (9)

in which ci is the sensitivity coefficient associated with the measurement quantityxi. The sensitivity coeffi-
cients can be obtained by partial derivation of the identification formulas (1) and (4).

3.2 Mixed numerical-experimental approach

The application of (9) requires the sensitivity coefficients of the measurands with respect to the measured
input quantities. Since MNET procedures are in nature numerical routines, it is impossible the obtain the
sensitivity coefficients through analytical derivation. A direct numerical evaluation of the sensitivity coef-
ficients, e.g. using a finite difference approach, would be very time consuming since a MNET procedure
contains one or more finite element models in its iteration loop. A more practical approach is to linearize the
MNET using the solution of the last iteration step as working point. Derivation of the sensitivities has then
become straightforward since they are the coefficients of the linearized MNET equations.
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3.2.1 Non-layered materials

Linearizing the frequency response surfaces of the finite element model by computing the first order Taylor
approximation in the point defined by the obtained material parameters provides the relation of (10). Equa-
tion (10) describes the influence of a variation of the material parameters on the resonance frequencies of the
test specimen,

{∆f} = [Sm]{∆p} (10)

in which the vector{∆f} contains the frequencies changes, the vector{∆p} contains the applied parameter
changes and[Sm] is the sensitivity matrix. The relation of (10) can be inverted by using the pseudo-inverse
of the sensitivity matrix. The inversion provides (11), which expresses the influence of a change of the
frequencies on the identified material parameters.

{∆p} = [Sm]†{∆f} (11)

Expression (11) thus allows to convert the uncertainties on the frequencies into uncertainties on the obtained
material parameters. In the identification procedure the material parameters are obtained by comparing –
and matching – the experimental and numerical frequencies. It is obvious that there is an uncertainty on
the experimental frequencies, but there is also an uncertainty on the numerical frequencies. To construct the
finite element model of the test specimen the specimen’s geometry has to be measured. The uncertainties on
the length, width, thickness and weight result in an uncertainty on the finite element model and thus in an
uncertainty on the numerical frequencies. The frequency uncertainties consist of two parts: an experimental
part{∆fexp} and a numerical part{∆fnum}.

{∆f} = {∆fexp}+ {∆fnum} (12)

The uncertainties on the numerical frequencies can be related to the uncertainties on the geometrical param-
eters by means of the first order Taylor approximation of the frequency response surfaces in a working point
defined by the value of the geometrical parameters of the finite element model. This process results in the
relation of equation (13).

{∆fnum} = [Sg]{∆G} (13)

Inserting the expressions of (12) and (13) into equation (11) provides a relation between the uncertainties on
the inputs and outputs of the identification procedure.

{∆p}=[Sm]†
(
{∆fexp}+ [Sg]{∆G}

)
(14)

=[Sm]†{∆fexp}︸ ︷︷ ︸
frequency

contribution

+ [Sm]†[Sg]{∆G}︸ ︷︷ ︸
geometry

contribution

(15)

By grouping the terms of (15) as

[χ]=
[
[Sm]† [Sm]†[Sg]

]
(16)

{∆I}=
{
{∆fexp}
{∆G}

}
(17)
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the influence of a change of the experimental frequencies and geometrical model parameters on a particular
material property can be written as:

∆pi =
∑

j

χij ∆Ij (18)

Sinceχij is the sensitivity coefficient of material propertypi with respect to the input parameterIj , the
combined uncertainty onpi is given by

upi =
√∑

j

(χij u(Ij))
2 (19)

3.2.2 Layered materials

The application of the presented uncertainty estimation method on the layered material identification routines
requires two modifications: a) the MNET linearization will have to be extended to multi-model identification
routines, b) the procedure has to be able to handle relations between the input uncertainties. The necessity
of the first requirement is obvious. The second requirement is a result from the fact that the total sample
thickness is the sum of the different layer thicknesses.

Multi-model routines The extension to multi-model routines is fairly straightforward. Consider a multi-
model identification routine that uses resonance frequencies ofns different test samples. For each of thens

models, one can write {
∆f{i}

}
=
[
S{i}

m

]
{∆p}, ∀i ∈ 1, . . . , ns (20)

in which the superscript�{i} indicates that theith specimen is being considered. The equations for the
different test samples can be combined as{

∆fglob
}

=
[
Sglob

m

]
{∆p} (21)

where{∆fglob} and[Sglob
m ] are the global frequency difference vector and sensitivity matrix for the material

properties, respectively.{∆fglob} and[Sglob
m ] are both block vectors in which theith block line contains the

data of theith specimen, or

{
∆fglob

}
=


{
f{1}}

...{
f{ns}

}


[
Sglob

m

]
=


[
S
{1}
m

]
...[

S
{ns}
m

]
 (22)

The influence of the geometrical errors on the frequencies of the finite element models of the different
specimens are given by {

∆f{i}
num

}
=
[
S{i}

g

]{
∆G{i}

}
, ∀i ∈ 1, . . . , ns (23)

Thesens sets of equations can also be combined to one global set as

{∆fglob
num} = [Sglob

g ]{∆Gglob} (24)
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where the global vectors are given by

{∆fglob
num} =


{

f
{1}
num

}
...{

f
{ns}
num

}
 , {∆Gglob} =


{
G{1}}

...{
G{ns}

}
 (25)

The global sensitivity matrix for the geometrical parameters is a block identity matrix with the following
structure.

[Sglob
m ] =


[
S
{1}
m

]
· · · [0]

...
...

...

[0] · · ·
[
S
{ns}
m

]
 (26)

In a similar way as in the single model case, it can be shown that

∆pi =
∑

j

χij ∆Ij (27)

where[χ] and{∆I} have the same structure as specified by (16) and (17), but have to be calculated using
the global vectors and matrices as defined by (22), (25) and (26).

Input uncertainty relations The uncertainty on the layer thicknesses of a layered material is a bit different
than the uncertainty on the other input parameters. The uncertainties on the other parameters are completely
independent, e.g. there is no relation between the uncertainty on the mass and the uncertainty on the length
of the sample. However, the uncertainties on the layer thicknesses are not independent, since the sum of all
the layer thicknesses has to be equal to the total thickness. Consider a beam with a thickness of 2 mm which
has two layers with a thickness of 1 mm. Assume that the total thickness and the two layer thicknesses can
all be measured with an uncertainty of 0.01 mm. This means that the layer thicknesses of both the layers can
vary between 0.99 and 1.01 mm. But if the thickness of the first layer equals 0.99 mm, this thickness of the
second layer can only vary between 1.0 and 1.01 mm. The thickness of the second layer cannot be smaller
than 1.0 mm, since that would results in a overall thickness that is smaller than 0.99 mm. This clearly shows
that the limits between which the thickness of one layer can vary depend on the thickness of the other layers.

Equation 9 is only valid for uncorrelated uncertainty sources, and is therefore no longer applicable. The
analytical evaluation of correlated uncertainties is a highly complex matter. Since a computationally efficient
linear approximation of the MNET procedure is available, it makes more sense to tackle the problem with
Monte Carlo simulations. For each layer a thickness value is generated using a random number generator
that produces a uniformly distributed set of test values that respects the upper and lower thickness bounds
that are imposed on the considered layer. All the layer thicknesses are added to get total sample thickness.
If the total sample thickness does not comply with the imposed bounds, the thickness value set has to be
rejected. This process has to be repeated until a sample set with a sufficient number of correct thickness
value sets has been obtained.

Calculating uncertainty budgets for layered materials The uncertainties on the experimental frequen-
cies, length, width, and mass are uncorrelated. Their contribution to the measurand uncertainty can thus be
computed with (9).

uuncorr.(pi) =
√∑

j

(χij u(Ij))
2 ,∀Ij ∈ {fexp, length, width, mass} (28)
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The layer thickness uncertainties are correlated. The uncertainty contribution can be evaluated with a Monte
Carlo simulation usingnmc test sample sets. Since the standard uncertainty is defined as one standard
deviation, the uncertainty contribution of the layer thicknesses can be estimated as

ucorr.(pi) =

√√√√ 1
nmc − 1

nmc∑
q=1

(∑
j

(χij ∆Ij,q)
)2

,∀Ij ∈ {layer thicknesses} (29)

in which q is the Monte Carlo test sample index. The total uncertainty is the combined uncertainty of both
correlated and uncorrelated uncertainty sources, or

u(pi) =
√

(uuncorr.(pi))
2 + (ucorr.(pi))

2 (30)

4 Examples

Consider a set of three rectangular steel beams. The first beam is a pure uncoated sample. The two other
beams are made of the same steel sheet, but are coated with a 0.2mm and 0.4mm coating, respectively. Table
1 gives an overview of the geometry of the three considered samples. Table 2 presents the properties of the
steel and the coating material.

Table 1: The geometry of the considered test samples

Thickness
Length (mm) Width (mm) Sub. (mm) Coat. (mm)

Sample-1 100.0 20.0 1.500 –
Sample-2 100.0 20.0 1.500 0.200
Sample-3 100.0 20.0 1.500 0.400

Table 2: The properties considered materials

E (GPa) G (GPa) ν (–) density (kg/m3)
Steel 200 80 0.30 7800
Coating 50 20 0.25 4000

The input quantities are determined using state-of-the-art frequency, length and mass measurement tools
(respectively a digital vibration analysis system, a profile projector and an analytical balance). The associated
uncertainties, which as explained in 3.1 are of Type B, are given in Table 3.

Table 3: The uncertainty on the input parameters

l (mm) w (mm) tsub (mm) tcoat (mm) ttot (mm) m (g) ff (%) ft (%)
Sample-1 0.02 0.01 0.005 – 0.005 0.001 0.1 0.1
Sample-2 0.02 0.01 0.005 0.010 0.005 0.001 0.1 0.1
Sample-3 0.02 0.01 0.005 0.010 0.005 0.001 0.1 0.1
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4.1 Homogeneous steel beam

Table 4 summarizes the calculation of the uncertainty contributions for the pure steel sample in accordance
to the UNCERT Code of Practice 13 [1].

Table 4: Uncertainties of the individual measurements and their relative contribution to the uncertainties of
Young’s and shear modulus.

ff ft l w m t
(Hz) (Hz) (mm) (mm) (g) (mm)

value 797.47 2367.66 100.00 20.00 23.400 1.500
uncertainty? 0.80 2.37 0.02 0.01 0.001 0.005
divisor?? 1.7321 1.7321 1.7321 1.7321 1.7321 1.7321
relative standard uncertainty (%) 0.0577 0.0577 0.0115 0.0289 0.0025 0.1925
sensitivity coefficient on E 2 – 3 1 1 3
sensitivity coefficient on G – 2 1 1 1 3
rel. contrib. to uncertainty on E (%) 3.82 0.00 0.34 0.24 0.00 95.59
rel. contrib. to uncertainty on G (%) 0.00 3.84 0.04 0.24 0.00 95.88
? Estimated tool or method uncertainty, type B.
?? For a rectangular probability distribution.

The data in Table 4 agree with the well-known observation that the uncertainty associated with the measure-
ment of the thickness of the sample is crucial. Table 5 provides the MNET sensitivity coefficients for the
elastic and shear modulus.

Table 5: Sensitivity coefficients for the MNET routine.

ff ft l w m t
(Hz) (Hz) (mm) (mm) (g) (mm)

sensitivity coefficient on E 2.0515 0.0096 3.0740 1.0368 1.0034 3.0586
sensitivity coefficient on G 0.1177 2.1311 1.0037 0.9397 0.9895 2.9502

With the input data of Table 4 and 5, the combined relative standard uncertainty and the expanded uncertainty
(for a coverage factork = 2 corresponding to a confidence level of 95%) can be computed with both the
standard (9) and MNET (27) procedure. Both methods yield the same results. The results shown in Table 6
confirm that the vibration based methods have a very high degree of accuracy.

Table 6: Combined and expanded relative uncertainties of Young’s and Shear modulus of a homogeneous
material.

E G

combined relative uncertainty (%) 0.59 0.59
expanded relative uncertainty (k = 2, confidence level of 95%) (%) 1.18 1.18

4.2 Coated steel beams

The elastic and shear modulus of the steel substrate and coating can be derived from the fundamental flexural
and torsion frequency of the considered samples. Since there are two layers, the layered identification algo-
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rithm requires the frequencies of at least two samples. Using the provided samples, the material properties
can be obtained with the four different sample combinations of table 7.

Table 7: The four possible sample sets

Sample-1 Sample-2 Sample-3
Set-1 ? ? –
Set-2 ? – ?
Set-3 – ? ?
Set-4 ? ? ?

These four sample combinations all result in the same values for the material parameters, but they do not
identify the properties with the same uncertainty. For the coated samples the measurand uncertainties can
be calculated with (30). By using the input uncertainties of Table 3, the uncertainty intervals of figure 2 are
obtained.
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Figure 2: The standard combined uncertainty for the elastic properties identified on the coated steel beams.

The solid lines of the plots of figure 2 represent the correct results, i.e. the results obtained by taking the
relations between the sample and layer thicknesses into account. Comparison of the results of the first two
sample sets shows that a thicker coating results in a lower uncertainty on the coating properties, but does not
affect the uncertainty on the substrate properties. Also note that the uncertainties on the substrate properties
are the same as the uncertainties found in the previous example. This indicates that the uncertainty on the
substrate properties is entirely controlled by the uncertainty on the pure substrate sample. The uncertainties
on the coating properties are influenced by both samples.

The third sample set is the only set that does not include a pure substrate sample. It results in the highest
substrate uncertainty and second highest coating uncertainty. It is thus advisable to include a pure substrate
specimen in the sample set. The use of a pure substrate appears to increase the reliability of the results, as
is clearly illustrated by comparing the uncertainties of samples sets 3 and 4. Extending the third sample set
with a pure substrate – sample set 4 – results in a substantial reduction of the uncertainty of both the substrate
and coating properties.

The dashed lines in figure 2 represent the uncertainties that were obtained when ignoring the relations be-
tween the uncertainties on the sample and layer thicknesses. The results clearly show that these relations have
to be taken into account in order to obtain meaningful results, e.g. for set-4 this results in an overestimation
of the uncertainty intervals with one third.
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5 Conclusions

A method to estimate the uncertainty on the material parameters identified with mixed numerical experi-
mental techniques was presented. The method estimates the uncertainty of the material parameters from the
uncertainty on the input parameters. The proposed method has two important uses. Besides quantification
of the uncertainty on the parameters obtained with a particular test, it can also be used in a pretest phase to
compare a number of possible test setups. For example, the identification of a layered material requires a set
of test specimen with different layer thicknesses. To find the most optimal sample set, the proposed method
can be used to estimate the uncertainties on the obtained parameters for all the considered sample sets. The
set which results in the lowest uncertainty on the identified parameters is obviously the preferred sample set.
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