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Abstract
Layered materials are becoming increasingly important for the production of high performance components
and constructions. Their stiffness properties are fundamental to assess stress fields during design calcula-
tions. A testing method to assess the in-plane elastic properties of each individual layer of a laminate has
been developed [1]. The proposed procedure is based on a multi-model updating routine, in which the elas-
tic properties of the finite element models of the test samples are simultaneously updated. Once the finite
element models reproduce the measured resonance frequencies, the updating procedure is halted, and the
elastic properties of the different layers can be retrieved from the finite element model’s database. This paper
focuses on the experimental validation of this new measurement procedure. The validation is carried out by
measuring the elastic properties of a reference material, i.e. a layered material of which the elastic properties
of the layers are known. The used reference material was obtained by gluing a stainless steel sheet to a brass
sheet.

1 Introduction

Elastic material properties play a major role in the vibratory behavior of structures. Vibration based material
identification methods are founded on this fundamental relation. These methods derive the elastic material
properties from the vibratory behavior of the test sample. One of the first applications of this approach was
reported in ‘Zeitung F̈ur Metallkunde’ by F̈orster in 1937 [2]. F̈orster used the Euler beam theory to link the
elastic modulus to the eigenfrequency of the specimen’s fundamental flexural mode. His method has been
refined by Pickett [3], Spinner and Teft [4]. The work of Spinner and Teft formed the base of the current
ASTM resonant beam test procedure [5], which standardized vibration testing based on analytical relations.

The use of analytical formulas to describe the vibratory behavior of test specimens is however a major
obstacle for extending the vibration based methods to more complex materials. In 1986, Sol [6] replaced
the analytical formulas by special purpose finite element models. The derived identification method, which
is called the ‘Resonalyser’ method [7], can simultaneously identify the four engineering constants of an
orthotropic material – i.e.E1, E2, G12 andν12 – from the experimental resonance frequencies of one single
test plate. In 2003 this method was extend to layered materials [1], in such a way that it became possible to
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identify the orthotropic elastic properties of each layer of a laminate.

2 Vibration based material identification

2.1 Mixed numerical-experimental approach

As shown in [6], mixed numerical-experimental techniques (MNETs) can be used to identify elastic material
properties. Figure 1 displays the general flowchart of the MNET procedure. The experimental part consists
of a modal analysis test performed on freely suspended test samples. This test configuration is used because it
can be approximated by free-free boundary conditions in the finite element model. The measured resonance
frequencies are used as input data for the identification routine. The numerical part of the method consists
of a highly accurate finite element model. The numerical frequencies are calculated using a set a trial values
for the unknown material parameters. The numerical frequencies are compared with the measured frequen-
cies, and corrected material properties are found by minimizing the output risiduals. The output risiduals are
frequency differences between the experimental and numerical frequencies. The improved material proper-
ties are inserted in the FE-model and a new iteration cycle is started. Once the numerical and experimental
frequencies match, the procedure is aborted, and the desired material properties can be found in the database
of the finite element model. Numerous test cases like [8], [9], [10] and [11] proof that MNETs are a reliable
tool to identify elastic material properties.

Figure 1: General flowchart for MNET based elastic material identification procedure.

The MNET procedure contains an optimization problem of which the objective function can be obtained as
follows. A sensitivity analysis performed on the finite element model provides a linearized relation between
an imposed parameter change and the resulting frequency shift in a particular working point of the parameter
space.

[S]{∆p} = {∆f} (1)

The vectors{∆p} and{∆f} contain the parameter and frequency changes, respectively. The matrix[S] is
the sensitivity matrix and contains the frequency sensitivities with respect to the material parameters. The
elastic properties are found by minimizing the frequency differences between the experimental and numerical
frequencies{∆r}. The optimal frequency shift is thus defined by
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minimize
∥∥∥{∆f} − {∆r}

∥∥∥2

2
∆f

(2)

where‖ � ‖2 denotes the Euclidean norm. Inserting the sensitivity relation (1) into (2) provides the mathe-
matical expression of the MNET’s optimization problem.

minimize
∥∥∥[S]{∆p} − {∆r}

∥∥∥2

2
∆p

(3)

To ensure a stable convergence of the iterative procedure, the optimization problem (3) is solved by consid-
ering a set of box constraints on the optimization parameters – the elements of the vector{∆p} – in such a
way that each material parameter cannot change more than 25% during one iteration step.

2.2 Single-beam versus multi-beam procedure

The sensitivity analysis, necessary to obtain the sensitivity matrix[S], can be executed in the global or in
a local axis system. Figure 2 introduces both the global or material axis system – 1-2 – and the local axis
system – x-y.

Figure 2: A typical sample set for the multi-beam identification routine.

The global axis system is defined by the principal material directions. In the case of sheet metal, the principal
directions are the directions parallel and perpendicular to the rolling direction. In this axis system, the
behavior of an orthotropic material can be described with four independent parameters:E1, E2, G12 and
ν12. The local axis system is aligned to the edges of the samples. In this axis system, the propertiesEx, Ey,
Gxy andνxy are no longer independent, and represent the apparent elastic properties in thex- andy-direction.

Figure 3 shows the results of a sensitivity analysis of the first five frequencies of a beam-shaped brass spec-
imen. The sensitivity analysis was performed in the local coordinate system. The first, second and fourth
vibration mode are bending modes, and their resonance frequencies appear to be solely determined by the
apparent elastic modulusEx. The torsion frequencies, modes three and five, are only sensitive to changes
of the apparent shear modulusGxy. These results lead to two major conclusions: a) all the bending/torsion
frequencies contain the same information, it is thus not necessary to use more than one bending/torsion fre-
quency, b) it is possible to identify the apparent elastic and shear modulus from the resonance frequencies of
one single beam-shaped specimen. Because this approach uses the frequencies of just one beam, it will be
referred to as the ‘single-beam identification’ procedure. An estimate of Poisson’s ratio can be derived from

G =
E

2(1 + ν)
(4)
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Figure 3: Sensitivity analysis in local material coordinates.

The obtained Poisson’s ratio will only be correct if the material is elastically isotropic. The variation of the
material properties in function of the material orientation can be obtained by measuring a set of beams that
each represent a different material direction, e.g. the sample set of figure 2.

But the single beam identification procedure is not a very intelligent approach. It does not consider any rela-
tions between the material properties that are obtained in the various material directions. For an orthotropic
material, all these properties are related to the principal material parameters as:

1
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1

E1
cos4 θ +

(
1

G12
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E1

)
sin2 θ cos2 θ +

1
E2

sin4 θ (5)

1
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It is possible to incorporate these relations into the identification procedure by performing the sensitivity
analysis in the global coordinate system. Figure 4 gives the results of such a sensitivity analysis for the five
brass beams of figure 2. For each beam, only the fundamental bending and torsion frequency were taken into
consideration. The results show a good sensitivity for every global material parameter. So, by considering
the resonance frequencies of a whole set of beams, it is possible to directly identify the pricipal orthotropic
material parametersE1, E2, G12 andν12. Because the frequencies of a set of beams are being used, the
MNET will have to simultaneously update a number of finite element models. In the rest of the text this
approach will be referred to as the ‘multi-beam identification’ procedure. Note that the mulit-beam approach
requires a minimum of two beams, of which at least one is not oriented in a direction parallel to the principal
material directions.

Since all the bending and torsion frequencies contain the same information, and since finite element mod-
els converge faster for lower order modes, it is preferred to use only the fundamental bending and torsion
frequencies as experimental input data for the MNET identification routines.

2.3 Layered materials

Due to the flexibly of finite element models, MNETs are an obvious choice to develop test procedures to
measure the elastic properties of layered materials. The extension of non-layered to layered identification
routines is discussed in detail in [1]. This article explaines why it is impossible to identify the elastic prop-
erties of the layers of a laminate from the frequencies of one single specimen. Resonance frequencies of
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Figure 4: Sensitivity analysis in global material coordinates.

laminates appear to be controlled by the overall stiffness of the material. The same overall stiffness can
be obtained with a infinite number of different layer stiffness combinations. Therefore, it is impossible to
decompose the overall stiffness into the correct layer stiffnesses, since there will be an infinite number of
solutions. This uniqueness problem can be overcome by using the resonance frequencies of a set of test
specimen. Each specimen of this set must be made with the same material layers, but must have a different
overall stiffness. [1] shows that there will only be one set of layers stiffnesses that will result in the correct
overall stiffness for all the test specimen, if the number of test specimen is larger or equal to the number of
unknown material layers. In this way, the unicity of the solution can be assured.

The overall stiffness of the laminate can only be altered by changing the stacking sequence of the layers or
by changing the thickness of – one of – the layers, which means that layered material identification requires
a number of purpose built samples. When these purpose built samples are not available, they can be obtained
by – partially – removing a layer. But removing a part of the material is not an optimal approach, since this
will most likely damage the sample, e.g. cracks, delamination. An alternative approach is to add a layer to
the laminate. If the properties of this layer are measured before it is added to the sample, it is possible to
produce an additional layer configuration without introducing any new unknown parameters. A candidate
material for this additional layer is glass. Glass is preferred because is very homogeneous, it is cheap, it can
be glued to almost any material and it is transparent. The transparency of glass has two major advantages,
a) it allows to visually check the quality of the glue layer, e.g. the presence of air bubbles, b) it allows the
use of UV-curing glue. UV-curing glue is very convenient for this purpose because it gives the user plenty
of time to correctly position the additional layer on the laminate and to remove possible air bubbles, in a
combination with the very short curing time.

Both the single-beam and multi-beam identification approaches can easily be extended to layered materials,
by considering all the used samples configurations in the updating procedure of the MNET.

2.4 The sensitivity matrix

Sensitivity matrices group sensitivity coefficients. Traditionally, these sensitivity coefficients are defined
as the partial derivatives of a model response with respect to a model parameter or in the case of material
identification

sij =
∂fi

∂pj
(9)

The use of these absolute sensitivities is not advisable to identify elastic material parameters. Absolute sen-
sitivities can results in ill-conditioned sensitivity matrices because their value depends on the absolute value
of the model parameters. When the model parameters differ several orders of magnitude, e.g. elastic moduli
and Poisson’s ratios, the sensitivity coefficients will too. Absolute sensitivities also result in a minimiza-
tion the absolute frequency differences instead of the relative frequency differences, indirectly increasing the
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importance of the higher order modes. The two problems can be solved by using the relative normalized
sensitivity coefficients defined by (10).

sij =
∂fi

∂pj

pj

fi
(10)

The methods discussed above require the simultaneous updating of a set of finite element models. For each
model, a sensitivity analysis provides:

{∆f}k = [S]k{∆p} (11)

in which [S]k is the sensitivity matrix of thekth sample (configuration), and{∆f}k the frequency shift
caused by the parameter change{∆p}. The global sensitivity matrix[S] groups the sensitivity matrices of
the individual models. 

∆f1

∆f2
...

∆fn

︸ ︷︷ ︸
{∆f}

=


S1

S2
...

Sn


︸ ︷︷ ︸

[S]

{∆p} (12)

in which {∆f} is the global frequency shift vector. The optimization problem of a multi-model MNET is
obtained by inserting expression (12) into (3).

The structure of the model sensitivity matrices[S]k depends on the identification routine. In the case of the
single-beam identification routine, the sensitivity matrix contains the sensitivities of the bending and torsion
frequency with respect to the apparent elastic and shear moduli of the different material layers or

[S]k =


Material 1︷ ︸︸ ︷

∂fb

∂Ex,1

Ex,1

fb

∂fb

∂Gxy,1

Gxy,1

fb

∂ft

∂Ex,1

Ex,1

ft

∂ft

∂Gxy,1

Gxy,1

ft

· · ·

Material nm︷ ︸︸ ︷
∂fb

∂Ex,nm

Ex,nm

fb

∂fb

∂Gxy,nm

Gxy,nm

fb

∂ft

∂Ex,nm

Ex,nm

ft

∂ft

∂Gxy,nm

Gxy,nm

ft


k

(13)

in which fb andft are the bending and torsion frequency, respectively. The modulusEx,i is the apparent
elastic modulus in thex-direction of theith material. In the case of the multi-beam identification techniques
the model sensitivity matrices contain the partial derivatives of the frequencies with respect to the four
principal orthotropic elastic parameters.

[S]k =


Material 1︷ ︸︸ ︷
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· · · ∂fb
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ν12,1
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· · ·
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· · · ∂fb
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∂ft

∂E1,nm

E1,nm

ft
· · · ∂ft

∂ν12,nm

ν12,nm

ft


k

(14)

3 The validation test

3.1 An experimental verification

The layered identification method discussed in the previous section has already been validated with a number
of numerical experiments. Those numerical validations were carried out using a set of virtual test samples.
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The experimental frequencies of these samples were obtained by calculating them with finite element models.
The obtained resonance frequencies were inserted into the layered identification routine to extract to elastic
layer properties. This approach does not only have the advantage that no actual test samples have to be
machined, it is also very convenient for validation purposes since the ‘unknown’ material properties are
in fact known, i.e. the elastic properties of the finite element models used to generate the experimental
frequencies.

However, a full verification of the proposed identification methods should also include an experimental
validation. The main problem with an experimental validation is absence of an absolute reference. The
elastic properties of real test samples are not known, and they cannot be easily measured since there are
no standardized testing procedures for layered materials. A usefully validation test thus requires a special
layered material, i.e. a layered material of which the materials of the different layers also are available
in homogeneous – non-layered – form. In this way the material properties of the layer materials can be
measured on the homogeneous samples, using standardized test. These values can then be used as reference
values to estimate the accuracy of the layered identification method, by comparing them with the properties
obtained on the laminate. For this validation test a purpose build bi-metal was used. This bi-metal was made
up with a steel layer and brass layer with a nominal thickness 0.6 mm and 0.8 mm,respectively.

3.2 Sample preparation

With a water jet cutting technique, a set of test samples was cut from two large steel and brass plates. For
each metal, the set of test samples comprised a series of 140 beams – 100×20mm – that were cut out in the
0.0◦, 22.5◦, 45.0◦, 67.5◦ and 90.0◦ directions. These directions indicate the angle between the samples long
axis and the rolling direction of the metal sheets, figure 2. The two metal layers were connected by gluing
them with a two component epoxy glue, Permabond Bondmaster E32 general purpose toughened structural
epoxy [12]. To achieve a glue layer which is as thin as possible, the samples were subjected to a pressure of
approximately 40 bar during the first phase of the curing cycle, which took about 8 hours. With this process,
glue layers with a thickness ranging between 5 to 15µm could be obtained. Once the glue was fully cured,
the sample edges were finished with a sanding process. This was necessary because it is impossible to keep
the two metal layers perfectly aligned during the gluing process. Figure 5 schematically represents the result
of the sanding process.

Figure 5: The effect of the sanding process.

This reference material is made up with two material layers, which means that the application of the proposed
identification technique requires at least two samples configurations. The first configuration was the initial
layered material – the steel-brass configuration. The second configuration was obtained by adding a glass
layer to the bi-metal. The additional glass layers were glued to metal samples with the Bohle B-682-0 UV-
curing glue [13]. To improve the quality of the edges the samples were once again sanded after adding the
glass layer. To examine the importance of the thickness of the glass layer on the obtained results, glass sheets
with a thicknesses of 0.5 mm and 0.7 mm were used.

The pure steel – brass – samples were obtained by gluing two steel – brass – layers. The gluing process was
necessary to obtain flat samples since the initial metal sheets were lightly curved. Curved samples have to
be avoid because the curvature will increase the stiffness of the samples. If this curvature is not modeled in
the finite element models of the identification routine, the induced stiffness increase will be attributed to the
elastic material parameters, and will thus result an overestimation of the material properties. Flat samples
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were preferred over the introduction of the curvature into the identification models, because the latter would
increase the complexity and uncertainty of the validation test, and subsequently complicate the interpretation
of the obtained results.

One hundred and forty beams, equally divided over steel and brass, were cut out of the metal sheets. For each
metal, the set of seventy beams contained fourteen beams in each of the five considered material orientations.
These hundred and forty beams were used to procedure thirty layered – brass-steel –, twenty homogeneous
steel – steel-steel – and twenty homogeneous brass – brass-brass – beams, equally spread over the five
material orientations. The thirty layered beams were modified with two different types of glass. Twenty of
the layered beams, four samples for each material orientation, were modified by adding a 0.7mm glass layer.
Ten layered beams were altered by adding the glass the steel side, the other ten were modified by gluing the
glass to the brass side. Ten layered beams, two samples in each material direction, were altered by adding a
0.5 mm glass layer. One half of these samples was made by adding the glass to steel side, for the other half
of the samples the glass was glued to the brass side. Figure 6 gives on overview of the layer sequences of all
these sample configurations.

Figure 6: The different configurations of the test samples.

4 The obtained results

4.1 Non-layered samples

The fundamental bending and torsion frequencies of the homogeneous steel and brass samples were mea-
sured and their elastic properties were estimated with both the single- and multi-beam identification proce-
dures. Figure 7 presents the results obtained on the steel beams, figure 8 presents the properties of the brass
beams. For the two materials, the correlation between the properties found with the single- and multi-beam
method are excellent for the elastic and shear modulus. However, for Poisson’s ratio there is absolutely no
agreement between the results obtained with the two methods. The graphs of the elastic and shear modulus
clearly indicate that these two properties vary in function of the orientation. This means that the both the
steel and brass material have orthotropic elastic properties. In the case of the single-beam identification rou-
tine, the value of Poisson’s ratio is derived from relation (4) which is only valid for isotropic materials. The
Poisson’s ratios obtained with the single-beam identification routine are thus incorrect.

4.2 Layered samples

The fundamental bending and torsion frequencies of the layered samples were measured two times, once for
the initial steel-brass configuration, and once for the steel-brass-glass configuration. Before the glass samples
were added to the layered test specimen, their properties were tested with the single-beam identification
technique. During the layered identification routines, the properties of the glass layers will be kept fixed.

In a first phase the properties of the layered samples were identified with the single-beam approach. Note that
in the case of the considered layered material, the single-beam technique uses the frequencies of two sample
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Figure 7: The properties of the homogeneous steel beams.
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Figure 8: The properties of the homogeneous brass beams.

configurations of the same beam, and thus requires two finite element models. The diamonds in the plots of
figure 9 represent the results of the single-beam identification routine. The purple dots indicate the average
values of the obtained layer properties. The data points that are marked with a cross in figure 9 were not
used in the calculation of the average properties. These six shear modulus values were rejected because they
lay to far away from the other data points. The correct properties of the layer materials, i.e. the properties
obtained on the homogeneous metal specimen, are represented by the dashed lines. The spreading of the
results obtained on the layered samples in higher that the spreading obtained on the homogeneous samples.
But the average values of the elastic and shear modulus are good, both for the steel and brass layers. The
average difference between the properties obtained on the layered samples and the reference values is 0.4%
for Ex,steel, 0.9% for Gxy,steel, 0.5% for Ex,Brass and 0.6% for Gxy,brass. The results for Poisson’s ratio are
incorrect, but this is related to a problem with the single-beam identification routine, and has nothing to do
with the proposed identification approach for layered materials.

In a second phase the properties of the layered samples were identified with the multi-beam approach. Since
there are thirty test samples, and two samples configurations for each samples, the multi-beam approach
required the simultaneous updating of sixty finite element models. The torsion frequencies associated with
the rejected shear modulus values were not used in the multi-beam identification. The solid lines of figure 9
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represent the multi-beam identification results . The results obtained on the layered samples, are similar to
those obtained on the homogeneous samples, even for Poisson’s ratio. The average difference between the
reference values and the properties identified on the layered samples are 0.5% for Ex,steel, 1.2% for Gxy,steel,
3.1% for νxy,steel, 0.2% for Ex,Brass, 0.2% for Gxy,brass and 0.3% for νxy,brass.
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Figure 9: The material properties obtained on the layered samples.

5 Conclusions

A vibration based mixed numerical-experimental technique to identify the elastic material properties of the
individual layers of layered material was experimentally validated. The validation was performed by identi-
fying the properties of a bi-metal of which the layer properties were known. In this way the results obtained
on the layered material could be compared with the correct material properties. The validation test has
shown that the proposed approach is capable of correctly identifying the layer properties from the resonance
frequencies of a set of beam-shaped samples. The single-beam routine can identify the elastic and shear mod-
ulus of the constitutive layers. The multi-beam routine can identify the full orhtoropic material parameter set
of each layer.
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