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ABSTRACT

Model tuning methods based on sensitivity coefficients offer
the advantage that many different types of state variables
(reference responses) and design variables can be used.
However, combining different types of state and design
variables in a single sensitivity matrix may lead to stability
problems in the updating algorithm. This problem is
demonstrated when combining resonance frequencies and
modal displacements as state variables in an objective
function. The stability of the solution can be guaranteed by
appropriate scaling of the sensitivity matrix also leading to
faster convergence. Various scaling methods are explored
from a statistical parameter estimation point of view. The
results are illustrated with application examples.

INTRODUCTION

There are two main approaches to finite element model
updating: (i) model matrix updating based on deterministic
optimization methods like proposed by Baruch [1] and
Berman, Nagy [2] and (ii) sensitivity-based model updating
using statistical parameter identification. The deterministic
approach will not be further considered in this paper.

The general form of the objective function used in
sensitivity-based model updating is a weighted sum of
Euclidean norms:
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where the n-dimensional vector {pa}={p1a,...,pna} are the
parameter values to be updated, {po}={p1o,...,pno} are initial
parameter values, {λa}=[λ1a,...,λpa]T, {ϕa}=[ϕ1a,...ϕpa]T are
analytical eigenvalues and eigenvectors, {λe}=[λ1e,...,λqe]T,
{ϕe}=[ϕ1e,...,ϕqe]T are experimental eigenvalues and
eigenvectors (with dimension p+q=m), Wy and Wp are
positive definite and usually symmetric weighting matrices.
ky and kp are the weighting coefficients for the two terms.
The solution of (1) is called the Bayesian estimator.

A special case of (1) is to set kp to zero and ky=1
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The solution of (2) is the weighted least square solution.

Sensitivity based model updating can be further classified
into two sub-categories depending on how parameters are
defined: (i) Submatrix Updating and (ii) Physical Parameter
Updating.

Submatrix Updating

The matrix updating method assumes that

[ ] [ ] [ ]∑α+= iia KKK (3.a)

[ ] [ ] [ ]∑β+= iia MMM (3.b)

where αi and βi are the unknown parameters to be
updated. Ki and Mi are correction submatrices, related to
elements or element groups defining possible error sources
[3, 4].
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and {α} = [α1,α2,...]T, {β}=[β1,β2,...]T

Physical Parameter Updating

From all the design variables in a finite element model, any
combination of physical properties can be selected as
parameters for the model updating algorithm. A parameter
defined in this way is clearly related to an element or a
group of elements. Because of the physical meaning, an
updated value can be easily interpreted and evaluated
against criteria set by the analyst. This explains why this
approach has become more popular and has been chosen
for implementation in commercial software programs [9].

In earlier applications, only eigenvalues were selected as
response (state variables) that needed to satisfy the
correlation requirement, although modal displacements
have since long time been proposed as responses [5]. The
problem with using mode shape data as responses is not
only the incompleteness of the experimental data, but
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mainly that the sensitivity matrix tends to become ill-
conditioned.

Lallement et al. [6] proposed a method in which the most
sensitive parameters are selected one by one according to
their influence on the rank and condition number of the
sensitivity matrix. However, this is a very expensive method
to use. Alternative solutions based on scaling of the
sensitivity matrix by acting on the weighting matrices Wp
will be discussed hereafter.

In order to achieve more reliable analytical models, the rigid
body characteristics like total mass, moments of inertia,
and center of gravity, should also be taken into account.
This idea was also proposed by Caesar [7].

Using MAC as response to improve model updating is
proposed by Heylen et al [8]. The sensitivity of MAC with
respect to a certain parameter can easily be obtained if the
mode shape derivatives are known. [9].

Other possible responses which can be used to extend the
measurement database, like for example force residuals,
orthogonality conditions, etc. have been proposed by
different authors. From a statistical parameter estimation
point of view, the more measurement data, the more
accurate the parameter estimation will be. On the other
side, when simultaneously using different response types,
numerical ill-conditioning due to large sensitivity
discrepancies is more likely to occur.

Some general methods that can be used to improve the
numerical condition of sensitivity matrices by acting on Wy
are further investigated in this paper.

BAYESIAN PARAMETER ESTIMATION

The stochastic form of the Bayesian parameter estimation
model is given by [10, 11, 13]
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Setting
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the statistical properties (mean and variance) of {∆y} and
{∆p} are assumed to be normal [5]
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In the mathematical model, {ε} is the measurement error
which is assumed to be white Gaussian (diagonal
covariance matrix) and uncorrelated with {∆p}. Iteration
starts from the initial parameter and covariance matrices
and stops when exact {y} is obtained ({∆y} -> {ε}), or within
a certain accuracy. The joint probability density function of
observation {∆y} and {∆p} can be written as [13]

( )
)yWypWp(

yp2

mn
y

T
p

T
2
1

e

VV2

1
)y,p(P

∆∆+∆∆−
+

π
=∆∆ (9.a)

1
yy

1
pp VW,VW −− == (9.b)

Wp is given by previous iteration, Wy is independent of p.
Maximizing the joint probability density function is
equivalent to minimizing an error function (1.a).
Minimization of (1.a) or maximization of (9.a) leads to the
following updating algorithm
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where [S]=∂y/∂p is the sensitivity matrix and Wp* is the
estimation error covariance. For a linear model and
assuming a normal distribution, the estimation is a
minimum variance estimation [10,11,12].

Using the modified Sherman-Morrison-Woodbury formula
[13], equation (10) can be written in an alternate form as
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From (10) and (11), it can be found that if measurement
error is small, Wy will be larger, then gain matrix [G] will be
large too, and more modification will be made to the
previous estimation

If confidence in the previous estimation of parameters is
low, [G] will be large, and more modification will be made to
the parameters. It works as an adaptive estimator.

Based on subjective guesses of the initial statistical
properties, i.e. mean values and covariance of the
parameters, using adaptive characteristics to modify a
previous estimation, is the philosophy of the Bayesian
estimator.

Convergence Criterion

As covariance matrices are positive definite,the matrices in
(10.b) and (11.b) can always be inverted. Physically, the
measurement data is more or less noise corrupted. But,
this does not imply convergence of the algorithm. If
convergence can be obtained, the necessary and sufficient
condition for a linear system is obvious: the estimation error
should reduce monotonically.

This means that
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The equivalent expression is
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(12) is applicable in a small linear range for a non-linear
system. A more detailed mathematical description can be
found in [12,14].

NORMALIZATION OF PARAMETERS AND RESPONSES

The simplest form of scaling which is often very effective is
to normalize the parameters and measurement data by
their initial values. Define the scaling matrices [Dp] and [Dy]
as
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The scaled parameter variation and scaled measurement
data are

{ } [ ]{ }{ } [ ]{ }yDy,pDp yp ∆=∆∆=∆ (14)

The sensitivity with respect to the scaled parameters is
given by
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Substitution (13) though (15) into (10), leads to
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where Wps and Wys are given by
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and Wps and Wys stand for the relative error of the
parameters and measurements if Wp and Wy were the
square of the absolute errors of the parameters and
measurements.

SCALING BASED ON Wp

Different methods to scale the sensitivity matrix are
discussed hereafter.

(a) Method one. A possible choice of Wp to scale the
sensitivity matrix is to use Wp* calculated at the
previous iteration step. Scaling the sensitivity in this
way makes the Bayesian estimator completely
equivalent to the Extended Kalman Filter [13, 15]. The
advantage of this type of scaling is that the more
effective parameters will not be modified much more
than the ineffective parameters. This is because in
general confidences in effective parameters are higher.
Thus, a higher value of Wp will be assigned to the
more effective parameters so that these parameters
will be less modified. The disadvantage of this scaling
method is that, it is only valid for the observable
system which should be an overdetermined or
determined system. For an undetermined system of

equations, the convergence criterion will not be
satisfied.

(b) Method two. The second possible selection of Wp is
to use the diagonal terms of Wp*. This type of scaling
uses the Bayesian adaptive nature and the capability
to satisfy the convergence criterion in case of an
undetermined system. Care should be taken when
some ineffective parameter diverges. If for such
parameter, Wp*(k)>Wp*(k-1), either fix this parameter,
or reduce Wp*(k), forcing it to satisfy the convergence
criterion. This method neglected the cross influence
among the parameters.

(c) Method three. Test cases showed that constant Wp
weighting (at all iteration steps, use the same Wp) is
also very effective for either overdetermined or
undetermined systems.  Because ineffective
parameters will be modified more, the estimation of
ineffective parameters is less accurate. Constant
weighting Wp is able to prevent over-modification of
the ineffective parameters. As the weighting Wp is
constant, it implies that at each iteration step, the
variances of the parameter are constant and that the
parameters can only be varied between the allowed
variances. So, convergence rate is faster than the
methods stated in (a) and (b). On the other hand,
divergence might occur due to too much modification
of the ineffective parameters.

(d) Method four. In this method, the weighting Wp is
reduced with each additional iteration according to a
certain mathematical relation. For example, we can
assume that

[ ] [ ] [ ])0(W)1k(W)k(W p
k
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where 0<α<1.

(e) Method five. When setting Wp to zero, the weighted
least square solution is obtained
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The assumption of zero Wp is equivalent to an infinite
variance: we have no a priori knowledge of the
parameter values. The direct consequence of this
assumption is the large parameter modification that is
allowed at each iteration step. Therefore, the
possibility of divergence is high. This type of estimator
is also referred to as ’improper estimator’ [11].

SCALING BASED ON Wy

If there exist only one type of responses, the response
weighting can easily be determined from the measurement
error. As we have stated before, if the error on measured
data is high, a low confidence will be assigned resulting in a
small parameter modification, and vice versa.

Consider a special case that illustrates the importance of
proper scaling. If a measurement is made very accurate it
seems reasonable to set [Wy]-1 to zero (no measurement
noise). By assuming unit weighting Wp, (16.b) becomes
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This is the pseudo solution of an undetermined system. If
[ ][ ]S S T  contains small diagonal terms, inversion will lead to
over-modification of parameter values. This can only be
corrected by adding a relatively high [Wy]-1 matrix which
leads to the odd conclusion that measurements should not
be too accurate. In fact, this illustrates that a statistical
formulation like the Bayesian, only makes sense when the
variance is considerable. Otherwise, deterministic
approaches are more appropriate.

Ojalvo et al proposed a so-called ε-decomposition method
[16] which differs from the Bayesian estimator in that it
introduces an artificial ε-value to solve conditioning
problems.

{ } { } [ ] [ ][ ] y)SS(Spp 1TT
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If there is only one type of response, let’s say the first ten
resonance frequencies of a structure, then different
weighting can be selected for each frequency depending on
its relative importance. For instance, the lower modes may
be more important. Then larger Wy can be used for these
lower frequencies.

If several types of responses are selected, weighting Wy
becomes very important, not only related to numerical
stability, but also to physical validity. We can rewrite (2) as
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where subscript f stands for frequency, ϕ for modes, m for
MAC, c for concentrated mass. We can consider three
scaling methods: (i) using the norm of response, (ii) using
the norm of the sensitivity matrix and (iii) zero weighting.
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Weighting by the Norm of Responses.

One way of determining the weighting coefficients is by
setting
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The coefficients are determined by the Euclidean norm of
each type of responses. The physical meaning of the
weighting coefficients is that they represent the relative
importance among all the selected types of responses.

Weighting by the Norm of the Sensitivity Matrix.

Another way of weighting selection is to use the norm of the
sensitivity matrix. The mathematical expression is
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The sensitivity matrix condition is improved by this type of
scaling.

Zero Weighting.

Some responses may be very insensitive to modifications
of all the selected parameters. This would be for example
the case for element stiffness properties near nodal lines
common to all considered mode shapes. In this situation,
the Bayesian estimator loses its judgment capability. Then
simply put a near zero weighting (variance near infinite) to
the response. Such useless responses can be identified by
checking the norm of sensitivity

p
yS i

i ∂
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If for the i-th response, its norm is very small, then a near
zero weighting can be assigned to it.

CASE STUDIES

Example 1

A finite element model was updated using different
combinations of simultaneous responses

Figure 1 shows the correlation results for three different
cases, using the norm of the sensitivity matrix to scale
response weighting: (i) using frequencies as responses, (ii)
using MAC and frequencies as responses, (iii) using modal
displacements and frequencies as responses.

Figure 2 shows the correlation results for two different
cases without scaling: (i) using modal displacements and
frequencies as responses, and (ii) using MAC and
frequencies as responses.

The correlation criterion that is used to evaluate the quality
of the updating is the average MAC-value for the mode
shapes that are considered, defined as:

i

N

1i
MACN

1 MACW100MeanMAC
i∑

=
−= (26)

where N is the number of responses.

From figure 1 it can be seen that using MACs or modal
displacements as additional responses, the Mean MAC
evolution is more stable. When comparing with the results
without scaling (figure 2), it is clear that scaling leads to
more stable and faster convergence.

Example 2

The first ten resonance frequencies of a cylinder are used
as responses to identify four global composite material
properties: Young’s moduli Ex and Ey, shear modulus Gxy
and Poissson’s ratio νxy. The covariance matrices were
used as Wp. Figure 3.a illustrates the parameter
modifications using different types of Wp weighting
methods. Figure 4.b is the parameter variance evolution
using the Kalman filter (Method one). Note that a high
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conifdence was assigned to νxy which explains the low
parameter modification and variance.

CONCLUSION

Introducing modal displacements, MAC and other
responses into the correlation objective function, can
improve the quality of model updating results. Stability of
the Bayesian parameter estimator when multiple types of
responses are used simultaneously, can be improved by
different methods to scale the sensitivity matrix. It is
important to understand the physical meaning of the scaling
methods. A convergence criterion to assess the quality of
model updating was proposed.
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Figure 1.

a. Using 12 frequencies as responses with scaling; b. Using 12 frequencies and 12 MAC-values
as responses with scaling; c. Using 12 frequencies and 30 modal displacements as responses

with scaling.
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Figure 2.

a. Using 12 frequencies and 12 MAC as responses without scaling; b. Using 12 frequencies and
30 modal displacements as responses without scaling.
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